Automotive metal stamping factory today

Budget lead frames manufacturers: We have 45 professional mold technicians and 5 mold design engineers.The company’s minimum punching distance is 0.2MM.the mold parts processing accuracy to 0.005MM, and the overall assembly accuracy to 0.01MM.Our R&D team has more than 10 years of experience in the precision stamping parts industry and can provide one-stop services from product evaluation to mold design, manufacturing, assembly, mold trial, and production. After the mold assembly is completed, professional mold technicians will be arranged to conduct mold trials. Advanced quality testing equipment will be used to test the dimensional accuracy, surface quality, internal structure of the first product, and may also conduct mechanical properties, functional testing, salt testing. Advanced Equipment – DOBBY NXT stamping equipment mainly adopts a toggle design, which can automatically adjust the equipment parameters to meet different stamping needs. This equipment is mainly used to manufacture precision hardware, electronic components, auto parts and other products that require high-precision processing. 40T-60T punching machines are mainly used in the metal stamping forming process and can meet the needs of various industries for high-precision and high-efficiency metal stamping parts. Its equipment, especially the SDS series servo punch machines, combines traditional mechanical punch machines with digital servo control systems, which can handle various stamping processes in an intelligent, composite, and green way to meet the needs of difficult-to-process forming materials. Find extra info on stamped lead frames.

Dongguan Fortuna Metals has invested a great deal in quality control with the latest equipment, including optical comparators and coordinate measuring machines to assure that every metal stamping, weldment, and assembly, large or small, is delivered on time with the highest quality. At our plant, quality control is paramount from start to finish. We have a complete tool kit of machines and systems to meet rigid customer demands. We start with consistent suppliers and approved sources that know the needs of our customers. We apply the latest equipment and processes including, SPC, TQM, and material trace-ability. Having an experienced quality technicians and production team is how we are able to meet your specific quality requirements.

Different materials may require different tool materials and coatings. For example, carbide tools are excellent for cutting hard metals, while high-speed steel tools might be suitable for softer materials. Matching the tool to the material and the specific machining task can enhance efficiency and part quality. Tool Path Optimization – Tool path planning is essential for reducing machining time and improving efficiency. Effective tool path strategies like climb milling, where the cutting tool rotates in the same direction as the material is fed, can reduce tool wear and improve surface finish. Trochoidal milling, a technique that uses circular tool paths, can also be beneficial for removing material efficiently. By optimizing tool paths, you can reduce machining time, minimize tool wear, and achieve better part quality.

Iterating designs based on test results can lead to optimal performance and reliability. Continuous testing and refinement ensure that your parts meet the highest standards and are ready for real-world applications. Cost-Effective CNC Machining Design Practices – Implementing cost-effective design practices in CNC machining can significantly reduce production expenses and improve overall efficiency. These strategies will help you optimize your designs without compromising on quality. Read additional info at dgmetalstamping.com.

After we receive the customer’s drawings, professional engineers will conduct DFM analysis of the product. Design feasibility analysis: Evaluate the feasibility of the mold design, including mold materials, structure and processing technology. By analyzing whether the mold design meets the existing technical conditions and process capabilities, determine its feasibility and provide suggestions for improvement. Manufacturability analysis: Conduct multi-dimensional analysis on the drawings provided by customers to provide customers with a variety of achievable, cost-reducing and efficiency-increasing stamping solutions while ensuring the functional structure of the product.

CNC machining is a cornerstone of modern manufacturing, known for its precision and versatility. Whether you’re crafting intricate aerospace components or robust automotive parts, the design phase is critical. Getting it right can mean the difference between a smooth, efficient production run and costly, time-consuming errors. In this guide, we’ll explore essential tips and best practices for designing parts specifically for CNC machining. From selecting the right materials and understanding tolerances to optimizing tooling and prototyping, we’ll cover all aspects to help you create high-quality, cost-effective CNC machined parts.

The stamping process is generally divided into forming and separation processes. Fortuna is mainly customized and designed through customer drawings. It generally goes through 10 steps such as DFM Evaluation, Mold Design, Mold Assembly, Sample Submission, and Mass Production to achieve a project. After stamping and forming, we will also perform electroplating, heat treatment, tapping, riveting and other processes on the product according to customer needs to ensure that the product will not be oxidized, deformed and other product defects. Our company currently has 70 stamping equipments, most of which are high-precision equipment imported from Japan. The main brands are Chin Feng, AOMATE, Aida, DOBBY, etc.